荆州日报
2024年05月17日

下载荆州日报客户端
在这里读懂荆州

第A008版:时事关注
版权声明

《荆州日报》(电子版)的一切内容(包括但不限于文字、图片、PDF、图表、标志、标识、商标、版面设计、专栏目录与名称、内容分类标准以及为读者提供的任何信息)仅供荆州日报读者阅读、学习研究使用,未经荆州日报及/或相关权利人书面授权,任何单位及个人不得将《荆州日报》(电子版)所登载、发布的内容用于商业性目的,包括但不限于转载、复制、发行、制作光盘、数据库、触摸展示等行为方式,或将之在非本站所属的服务器上作镜像。否则,荆州日报将采取包括但不限于网上公示、向有关部门举报、诉讼等一切合法手段,追究侵权者的法律责任。

科研人员取得量子机器
学习研究新进展

  新华社武汉5月16日电 据武汉大学消息,该校计算机学院罗勇教授团队在量子机器学习研究方面取得新进展,首次证明了量子数据的纠缠程度对量子机器学习模型预测误差的影响表现出双重效应。相关研究成果近日在线发表在国际学术期刊《自然·通讯》上。

  论文通讯作者罗勇介绍,量子纠缠是实现量子计算优势的关键资源。目前,科学家广泛关注如何将量子纠缠整合到量子机器学习模型的各个环节,以期超越传统机器学习模型的性能。尽管如此,量子数据的纠缠程度具体如何影响量子机器学习模型的性能,仍然是一个尚未解决且颇具挑战性的研究课题。

  “现有研究通常认为量子纠缠有助于提升量子机器学习模型的性能。”罗勇说,该研究团队分析了量子数据纠缠程度、测量次数以及训练数据集的规模对量子机器学习模型预测误差的影响,首次证明量子数据的纠缠程度对预测误差的影响表现出双重效应,可以是积极的,也可以是消极的,而决定量子纠缠是否能提升量子机器学习性能的关键在于允许的测量次数。在足够次数的测量条件下,增加量子数据的纠缠可以有效减少量子机器学习模型的预测误差,或减小实现相同预测误差所需的量子数据大小。相反,当允许的测量次数很少时,使用高度纠缠的量子数据可能会导致预测误差增大。该研究为设计更先进的量子机器学习协议,特别是针对当前量子计算资源有限的量子计算机而定制的协议提供了重要理论指导。

您的IE浏览器版本太低,请升级至IE8及以上版本或安装webkit内核浏览器。